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GENETIC VARIANTS AND NUTRITION

Nutrigenetics: science that studies the effects of genetic variations on the response to 
nutrients, with the aim of identifying the foods most suitable for a particular person. 
Nutrigenomics: science that studies the effects of nutrients on the expression of 
genes, i.e. how nutrients act directly at the DNA level and therefore at the level of the 
proteome and metabolome. Nutriepigenomics: science that studies specific nutritional 
interventions capable of favorably regressing epigenetic alterations. 

Dietary lifestyle is a fundamental determinant of risk for the most widespread chronic 
diseases in the Western world: cardiovascular, obesity, diabetes and many cancers. 
There are many guidelines, based on large-scale epidemiological studies, aimed at the 
general population or homogeneous groups of patients who share the same condition of 
possible risk or pathology. It is also known that the individual response to the same type 
of diet is variable, both in terms of clinical outcomes and the modulation of the risk of 
disease due to psychosocial, cultural and economic causes, and for the expected, much 
less well-known, complex interactions, between genetic and environmental factors, 
certainly not easily qualified in a reliable way today. 
The availability of new technologies and ever-increasing knowledge in the “omics” field 
have led to the hypothesis of a possible evolution towards personalized nutrition. The 
molecular analysis of the genome and the metabolome has in fact highlighted numerous 
variants differently associated with dietary factors, and in this sense potentially 
attributable to susceptibility to many chronic diseases. 

The enormous potential of these developments does not currently correspond to 
results validated in the clinical field, despite being highly suggestive in terms of 
pathophysiological bases. 
The examples of genetic variants involved in the risk of disease, through interaction 
with diet, are numerous and concern many highly prevalent conditions, for example 
hypercholesterolemia, hypertriglyceridemia, breast cancer, osteoporosis, metabolic 
syndrome, type 2 diabetes, obesity, non-alcoholic fatty liver disease. In the context 
of glucose metabolism, approximately 100 genetic variants have been identified for 
type 2 diabetes and over 40 for type 1, capable of interacting with the intake of both 
carbohydrates and fibers to weakly modulate the risk of the disease4. 
We also note the polymorphisms of the vitamin D receptor (VDR) gene, associated with 
post-menopausal osteoporosis in women who consume little calcium6, and the variants 
of the genes that regulate homocysteine metabolism, for example MTHFR and MTR, 
associated with the risk of breast cancer in subjects with low intakes of folate, vitamin 
B6 and B127. 
Genetic studies have also highlighted 97 loci relating to the accumulation of adipose 
tissue and another 49 relating to fat distribution. The variants of the first so-called 
“obesity gene” identified, FTO (fat mass and obesity associated), are closely associated 
with the increase in BMI (body mass index), especially in the presence of diets rich in 



fats and proteins. A common polymorphism of the PLIN (perilipin) gene, involved in the 
regulation of fat accumulation in adipocytes, can reduce the risk of obesity in association 
with a diet rich in carbohydrates but increase it in case of reduced intake8. 
These data help to explain the well-known, and expected, poor results of the 
usual generalized approach (one-size fits all) to reducing body weight. Important 
methodological-linguistic note: the use of the term association is not accidental: in 
epidemiology and statistics it indicates a substantially descriptive relationship between 
“causes” and “effects” but does not explain whether one phenomenon is the cause of the 
other: that is, it indicates a possible line of research. 

Genetics and diet personalization Studies concerning the metabolome have identified 
markers which, modifiable by diet, can constitute a premise for studies on the 
stratification of dietary interventions in type 2 diabetes. For example, in a meta-analysis 
of 8 prospective studies, conducted on 8,000 individuals, of which 1,940 diabetics 
type 2, a positive association was found between the risk of diabetes and the plasma 
concentration of some branched-chain amino acids (leucine and valine) and aromatics 
(tyrosine and phenylalanine), while glycine and glutamine demonstrated an inverse 
correlation.
In a case-control study, on a cohort of approximately 30,000 subjects from the EPIC-
InterAct study, while the importance of obesity as a universal risk factor for diabetes 
was confirmed, at any level of genetic risk, no correlation emerged significant between 
polygenic diabetic risk score and Mediterranean diet.
 
A prospective cohort study highlighted that better adherence to healthy dietary 
patterns reduced the effects of genetic variants associated with weight gain, especially 
in subjects at high risk of obesity, while a prospective case-control study on over 8,000 
subjects of the INTERHEART study and almost 20,000 of the FINRISK, highlighted the 
favorable effect of a diet rich in fruit and vegetables on subjects at risk of myocardial 
infarction on a genetic basis. On the contrary, unhealthy diet, rich in simple sugars 
and saturated fats, have been found to be able to amplify the effects of genetic variants 
predisposing to obesity. 
The type of diet can have a favorable or unfavorable impact through the direct influence 
on the expression of genes that regulate metabolic pathways14. For example, in a cross-
sectional study on 220 healthy subjects, the Western diet resulted in an increased pro-
inflammatory and carcinogenic gene expression profile compared to a Mediterranean 
diet. Similarly, a diet rich in red meat, associated with particular genetic variants, has 
determined metabolic patterns associated with increased risk of colon cancer.

WIDE PANEL OF GENETIC VARIANTS POTENTIALLY INVOLVED IN NUTRITION AND 
METHABOLISM









































With the completion of human genome sequencing and entering the-Omics area, the new 
term “Nutritional Genomics” tends to replace the former “nutrient-gene interactions”. 
It has been demonstrated that numerous genetic polymorphisms can influence protein 
structure function. The Nutritional genomic area includes two parts: first Nutrigenomics 
that is the study of interaction between dietary components and the genome, and 
the regulating changes in proteins and other metabolism; second Nutrigenetics that 
identify the response to dietary components with regard to genetic differences.
Nutrients are as environmental factors can interact with genetic material. It has 
been clearly demonstrated that DNA metabolism and repair depend on a wide range 
of dietary factors that act as cofactors or substrates in metabolic pathway, but 
much less is known about the impact of cofactors and/or micronutrients deficiency 
or excess on the fidelity of DNA replication and repair. Although the nutrients 
can influence the development of a particular phenotype, the response to a specific 
nutrient that determined by the individual genotype has also to be considered.
The central role of genetic code in determining genome stability and related health outcomes 
such as developmental defects, degenerative diseases, and cancer is well-established. 
The etiology of complex chronic diseases obviously relates to both environmental and 
genetic factors. Specifically, the “fetal basis of adult disease” or “early origins hypothesis” 
postulates that nutrition and other environmental factors during prenatal and early 
postnatal development influence gene expression and cellular plasticity, which can 
alter susceptibility to adult diseases (cardiovascular diseases, diabetes, obesity).
The concept of nutrients effects on DNA stability, repair and on the different gene expression 
processes, recently became more prominent in nutritional science. Numerous dietary 
components can alter genetic and epigenetic events and therefore influence health.
SNPs (single nucleotide polymorphisms) are the most common genetic variation, 
occur at about 500–2000 bp throughout the human genome, and normally found in 
at least 1% of the population. Many human studies have demonstrated the evidence 
for interaction between SNPs in various genes and the metabolic response to the 
diet. Moreover, SNPs analysis provides a potential molecular tool for investigating 
the role of nutrition in human health, diseases and identification of optimal diets.
Nutrients and genome interact at two levels: 1) Nutrients can induce or repress 
gene expression thereby altering individual phenotype. 2) Conversely, single 
nucleotide polymorphisms can alter the bioactivity of important metabolic 
pathways and mediators and influence the ability of nutrients to interact with them.

NUTRIGENETICS
Nutrigenetics term was used first time by Dr R.O Brennan in 1975 
in his book Nutrigenetics. Nutrigenetics points to understanding 
how the genetic background of an individual impact to the diet.
The study of gene-nutrient interaction is a developing area of science. This idea that 
adverse diet/genome interaction can cause disease is not new and the unsuitable diet 
for any individual genotype could be a risk factor for monogenetic and polygenetic 
disease. Genetic polymorphisms can influence response to environmental elements, 



such as enzymatic activities changes that affect circulating concentrations and 
ultimately the effectiveness of chemicals and their metabolites. Furthermore, 
metabolic disorders are other examples of influence of the genetic variations to diet 
such as PKU, defects associated with long chain fatty acid oxidation, iron absorption 
(haemochromatosis), which can be reasonably well managed with dietary restrictions.
As mentioned earlier SNPs study can be categorized in the field of Nutrigenetics. 
Some specific examples of the association between SNPs and specific food components 
such as enzymes deficiency are reviewed in this article. For example, different 
mutations in galactose-1-phosphate  uridyltransferase (GALT) gene, phenylalanine 
hydroxylase gene, and Glucose-6-phosphate dehydrogenize (G6PD) gene resulted 
in Galactosemia, Phenylketonuria (PKU), and Favism diseases, respectively. Other 
examples of enzyme polymorphisms include Lactase-phlorizin hydrolase gene (LPH) 
polymorphisms that show how SNPs alter gene expression. This polymorphism 
is in the upstream of the lactase-phlorizin hydrolase gene (LPH) associated with 
hypolactasia and changes tolerance to dietary lactose (milk sugar, LPH hydrolyzes 
lactose into glucose and galactose) and allows different expression of the LPH.
Glutathione peroxide gene polymorphism is another example. The association between 
selenium supplementation and reduced incidence of liver, colon, prostate, and lung cancer 
in human has been shown. However, no individuals may respond equally. Glutathione 
peroxide is a selenium-dependent enzyme that acts as an antioxidant enzyme. 
Polymorphism at codon 198 of human glutathione peroxides results in a substitution of 
proline to leucine amino acid, and has been associated with an increased risk of lung cancer. 
Investigators shown that persons with (Pro/Lue) genotype were at 80% greater risk for 
lung cancer and (Lue/Lue) genotypes were at 130% greater risk compared risk those with 
the (Pro/Pro) genotype. The leucine-coding allele was less responsive to increased activity 
because of selenium supplementation as compared with the proline-containing allele.
Manganese super oxide dismutase (MnSOD) is a mitochondrial enzyme that 
plays a key role in detoxification of reactive oxygen species. A polymorphism 
valine to alanine substitution in in this enzyme alters its transport into 
mitochondria, which has been associated with increased risk of breast cancer.
Methylene tetrahydrofolate reductase (MTHFR) enzyme catalyzes the reaction that 
produces 5-methyl tetrahydrofolate. The one-carbon units are carried on N-5 or N10 
of tetrahydrofolate. One-carbon metabolism is needed for the de novo synthesis of 
purine nucleotides and thymydilate and for the re methylation of homocysteine to 
methionine. With methionine adenylation S-adenosylmethionine (SAM) is formed, 
which is a cofactor for numerous methylation reactions such as DNA methylation 
that affect gene regulation. For the MTHFR gene tow important SNPs has been well 
recognized: C677T (cytosine-to-thymidine substitution resulting in the conversion 
of an alanine to valine) and A1298C (adenine-to-cytosine substitution resulting in 
the conversion of an alanine to glutamic acid). The C677T polymorphism is the most 
common variant that occurs as homozygous T/T in 5–10% of the and as heterozygous 
C/T genotypes up to 40% general population. The presence of C677T or A1298C 
mutations is associated with reduction in MTHFR enzyme activity and impairs 



folate accumulation, which may cause increases homocysteine concentration in 
plasma, a risk factor for venous thromboembolic and ischemic arterial diseases.
Another polymorphism of MTHFR gene is Ala222Val that affects folate metabolism. 
It increases the conversion of dUMP to dTMP and leads to more folate-dependent 
thymidine biosynthesis and folate deficiency. This polymorphism is a risk 
factor for spontaneous abortions and decreased fetal viability, thus maternal 
folate supplementation can be useful for individuals with this polymorphism.
MTHFR is also involved in maintenance genomic CpG methylation patterns 
and prevention of DNA strand breaks, these mutations are associated 
with increased risk of neural tube defects and some types of cancer.
Changes in the concentration of folate (the MTHFR substrate) and 
riboflavin (the MTHFR cofactor) can modulate the activity of MTHFR 
gene. Generally, folic acid supplementation can help the negative health 
effect of these SNPs with decrease in plasma homocysteine levels.
Enzymes that utilize and metabolize vitamin B12 have been associated with NTDs, 
increased risk of Down syndrome and colon cancer. For example, a common polymorphism 
in the HFE gene (Cys282Tyr) is associated with iron storage disease hereditary 
haemochromatosis, leading to an iron accumulation in the liver, heart and endocrine glands. 
This protein is an important regulator of cellular iron homeostasis and has role in intestinal 
iron absorption by regulating the interaction of the transferrin receptor with transferrin.
Cytochrome P450s (CYPs) enzymes play a central role in the oxidative 
biotransformation of steroids, prostaglandins, nutrients, drugs, chemicals and 
carcinogens. Several dietary factors can alter the expression of CYP isoforms. 
CYP1A2 plays an essential role in the metabolism of wide range of drug and chemical 
substances. For example, CYP1A2 activates dietary carcinogens such as aromatic 
amines, but also detoxifies compounds such as caffeine. Low-activity CYP1A2 
genotype with an increased risk of myocardial infarction suggests that this enzyme 
detoxify a substance, which may be an important risk factor in the population. Indeed, 
individuals with a low-activity CYP1A2 genotype are at a greater risk of coffee-
associated heart disease. As caffeine is the main substance in coffee and is detoxified 
by CYP1A2, it may be an important risk factor for heart disease in certain population.
Glutathione S transferase (GST) enzyme is a superfamily of enzymes that play an 
important role in the detoxification of several dietary compounds. GSTM1, GSTT1 
and GSTP1 are isoforms of this enzyme. The GSTM1 and GSTT1 null genotype 
have been associated with both an increased and a decreased risk of some types of 
cancers such as breast cancer. Some components such as dietary isothiocyanates 
that are found in cruciferous vegetables are eliminated with GSTs enzymes. Indeed, 
protective effect of the GSTM1 null genotype on colon and lung cancer has been 
related to lower urinary excretion of glutathione-conjugated phytochemicals 
indicating they are not rapidly excreted. GSTT1 plays a similar role to GSTM1 in 
eliminating beneficial phytochemicals found in cruciferous vegetables. Moreover, in 
vegetables rich in phytochemicals such as isothiocyanates the expression of GSTs 
is increased conjugating them to more water-soluble forms that are easily excreted.



Endothelial nitric oxide synthase (eNOS) is synthesized from the amino acid L-arginine 
by NO synthase (NOS). The eNOS is expressed in the endothelium and produces NO that 
diffuses to vascular smooth muscle cell, where it increases the concentration of cGMP, 
leading to vascular relaxation. NO has central role in the pathogenesis of coronary 
spasm and atherogenesis. Several polymorphisms of eNOS may be associated with 
specific phenotype. For example, a Glu298Asp polymorphism in the eNOS gene has been 
associated with ischemic heart disease, myocardial infarction, and coronary spasm.
Genetic polymorphisms in catechol-O-methyltransferase, sulfotransferase, 
and UDP-glucuronosyltransferase result in differences in enzymatic activity. 
These enzymes metabolize some of dietary compounds. For example, 
green tea was associated with a lower risk of breast cancer only in women 
with the low-activity allele for catechol-O-methyltransferase. This enzyme 
catalyzes the methylation of catechins (a polyphenolic antioxidant plant 
secondary metabolite) in green tea making them more quickly eliminated (5).
Apolipoprotein E (ApoE) gene has three different alleles (ε2, ε3, ε4). Persons with ε4 
variant respond to a high-fat diet negatively with an increased risk for coronary heart 
disease (CHD). In these individuals, low-fat diet should be useful. Moreover, there is 
an important relationship between allelic variants in the ApoA1/C3/ A4/A5 genes and 
the effect of dietary fats on lipoprotein metabolism and CVD (cardio vascular diseases) 
risk. Linkage disequilibrium within Apo A1/C3/A4/A5 cluster has been represented 
to affect plasma lipid concentration and CVD risk. Apolipoprotein A-1 is and is a key 
component of high-density lipoprotein particles (HDL). The locus of gene encoding 
APOA-1 is on chromosome 11q and highly polymorph and has a specific SNP in its 
promoter region. An Adenine/Guanine substitution in the promoter region (−75bp) of 
the ApoA1 gene is common in different populations. The presence of A allele (A/A and 
A/G) has been associated with incresed HDL-cholesterol. Moreover, mild increase in 
APOA-1 concentrations in subjects with the G/G genotype was observed. APOA-5 gene 
is also an important regulator of triglyceride (TG)-rich lipoprotein (TRL) metabolism.
One of the Vitamin D receptor (VDR) polymorphism is Fok1. Individuals with F allele 
have three amino acids more than those without F allele in their VDR. The Ff or ff 
genotype is associated with 51% and 84% greater risk of colorectal cancer, respectively. 
Individuals that consumed low calcium and fat diet have more than double risk of 
colorectal cancer, specifically in persons with ff genotype rather than Ff genotype. 
VDR polymorphisms have been also associated with childhood and adult’s asthma.
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptor supper 
family that plays an essential role in fatty acid oxidation, glucose, and extracellular 
lipid metabolism. PPARs are the best-known fatty-acid-regulated nuclear receptors. 
One of the three members of the PPARs family regulates many genes involved in 
fatty acid metabolism. PPR-ε (PPARA) plays a central role in lipid oxidation and 
inflammation, whereas PPAR-ε is involved in adipocytes differentiation, glucose and 
lipid storage, and inflammation. PPAR-ε (also known as PPAR-ε), may has a crucial 
role in development, lipid metabolism, and inflammation. These receptors bind 
to fatty acid and regulate the expression of genes involved in fatty acid transport 



and metabolism. PPARs family also involve in activation of about 300 genes.
The PPAR-ε gene has a polymorphism at codon 162 (Lue162Val) that has been 
associated with changes in total cholesterol, LDL-associated cholesterol, and Apo B 
concentrations. The less common V162 allele is associated with significantly higher 
serum concentration of total cholesterol, LDL cholesterol, Apo B, and Apo C-III than in 
carriers of L162 allele, especially in men. For individuals with the common L162 allele, 
increased intake of polyunsaturated fatty acids (PUFAs) had little effect on fasting 
triacylglycerol concentrations. In those with the less common V162 allele, however, 
fasting triacylglycerol concentrations fell abundantly with increasing PUFA intake

GENES ASSOCIATED WITH SPORT
Caffeine, found naturally occurring in several plant species including coffee, tea, cocoa, 
and guarana, is widely used in sport as a performance enhancer or ergogenic aid 
often in the form of caffeinated tablets, gels or chews. In the field of nutrigenomics, 
caffeine is the most widely researched compound with several randomized controlled 
trials investigating the modifying effects of genetic variation on athletic performance. 
Numerous studies have investigated the effect of supplemental caffeine on exercise 
performance, but there is considerable inter-individual variability in the magnitude of 
these effects, or in the lack of an effect when compared to placebo. These inter individual 
difference appear to be partly due, to variation in genes such as CYP1A2 and possibly 
ADORA2, which are associated with caffeine metabolism, sensitivity and response. Over 
95% of caffeine is metabolized by the CYP1A2 enzyme, which is encoded by the CYP1A2 
gene. The−163A>C (rs762551) single nucleotide polymorphism (SNP) has been shown 
to alter CYP1A2 enzyme activity, and has been used to identify individuals as “fast” 
or “slow” metabolizers of caffeine. Individuals who are considered slow metabolizers, 
that is with the AC or CC genotype, have an elevated risk of myocardial infarction, 
hypertension and elevated blood pressure, and pre-diabetes, with increasing caffeinated 
coffee consumption, whereas those with the AA genotype (fast metabolizers) do not 
appear to carry these risks. The largest caffeine and exercise study to date, examined 
the effects of caffeine and CYP1A2 genotype, on 10-km cycling time trial performance 
in competitive male athletes after ingestion of caffeine at 0 mg, 2 mg (low dose) or 
4 mg (moderate dose) per kg body mass. There was a 3% improvement in cycling 
time in the moderate dose in all subjects, which is consistent with previous cycling 
time trial studies using similar doses. However, there was a significant caffeine-gene 
interaction where improvements in performance were seen at both caffeine doses, but 
only in those with the AA genotype who are “fast metabolizers” of caffeine. In that 
group, a 6.8% improvement in cycling time was observed at 4 mg/kg, which is >2–4% 
mean improvement seen in several other cycling time trial studies, using similar 
doses. Among those with the CC genotype, 4 mg/kg caffeine impaired performance by 
13.7%, and in those with the AC genotype there was no effect of either caffeine dose. 
The findings are consistent with a previous study, which observed a caffeine-gene 
interaction and improved time trial cycling performance with caffeine only in those 
with the AA genotype. Some previous endurance-type studies either did not observe 



any impact of the CYP1A2 gene on caffeine-exercise studies, or reported benefits 
only in slow metabolizers. There are several reasons that may explain discrepancies 
in study outcomes including smaller sample sizes (<20 subjects) that cause very low 
numbers and/or no subjects with the CC genotype, and shorter distance or different 
type  (power vs. endurance) of performance test , compared to those that reported 
improved endurance after caffeine ingestion in those with the AA genotype of CYP1A2. 
The effects of genotype on performance appear to be most prominent during exercise of 
longer duration or an accumulation of fatigue (aerobic or muscular endurance) (69, 70). 
Fast metabolizers may quickly metabolize caffeine and achieve the benefits of caffeine 
metabolites as exercise progresses, or override the short duration of negative impacts 
(the initial stages of exercise), whereas the adverse effects of restricted blood flow 
and/or other impacts of adenosine blockage in slow metabolizers are likely to remain 
for a longer duration. Indeed, in a study of basketball performance in elite players, 
caffeine improved repeated jumps (muscular endurance; an accumulation of fatigue), 
but only in those with the AA genotype, however, there was no genotype effect in the 
other two performance components of the basketball simulation. Similarly, a cross-
over design of 30 resistance-trained men found that caffeine ingestion resulted in a 
higher number of repetitions in repeated sets of three different exercises, and for total 
repetitions in all resistance exercises combined, which resulted in a greater volume of 
work compared to placebo conditions, but only in those with the CYP1A2 AA genotype. 
Taken together, the weight of the evidence supports the role of CYP1A2 in modifying 
the effects of caffeine ingestion on aerobic or muscular endurance-type exercise. 
The ADORA2A gene is another potential genetic modifier of the effects of caffeine on 
performance. The adenosine A2A receptor, encoded by the ADORA2A gene, has been 
shown to regulate myocardial oxygen demand and increase coronary circulation 
by vasodilation. The A2A receptor is also expressed in the brain, where it regulates 
glutamate and dopamine release, with associated effects on insomnia and pain. The 
antagonism of adenosine receptors by caffeine could differ by ADORA2A genotype, 
resulting in altered dopamine signaling. Dopamine has been associated with motivation 
and effort in exercising individuals, and this may be a mechanism by which differences 
in response to caffeine are manifested. One small pilot study has examined the 
effect of ADORA2A genotype (rs5751876) on the ergogenic effects of caffeine under 
exercise conditions. Twelve female subjects underwent a double-blinded, crossover 
trial comprising two 10-min cycling time trials following caffeine ingestion or placebo. 
Caffeine benefitted all six subjects with the TT genotype but only one of the six C allele 
carriers. Further studies are needed to confirm these preliminary findings and include 
a larger sample to distinguish any effects between the different C allele carriers (i.e., CT 
vs. CC genotypes). Sleep is recognized as an essential component of physiological and 
psychological recovery from, and preparation for, high- intensity training in athletes. 
The ADORA2A rs5751876 genotype has also been implicated, by both objective and 
subjective measures, in various parameters of sleep quality after caffeine ingestion in 
several studies. Adenosine promotes sleep by binding to its receptors in the brain, mainly 
A1 and A2A receptors, and caffeine reverses these effects by blocking the adenosine 



receptor, which promotes wakefulness. This action, as well as the potency of caffeine to 
restore performance (cognitive or physical) in ecological situations, such as highway-
driving during the night, support the notion that the adenosine neuromodulator/
receptor systemplays a major role in sleep–wake regulation. This action of caffeine 
may also serve athletes well under conditions of jetlag, and irregular or early training 
or competition schedules. Psychomotor speed relies on the ability to respond, rapidly 
and reliably, to randomly occurring stimuli which is a critical component of most 
sports. Genetic variation in ADORA2A has been shown to be a relevant determinant of 
psychomotor vigilance in the rested and sleep-deprived state and modulates individual 
responses to caffeine after sleep deprivation. In support of this notion, individuals who 
had the TT genotype for ADORA2A rs5751876 consistently had faster response times 
(in seconds) than C allele carriers after ingesting 400 mg caffeine during a sustained 
vigilant attention task after sleep loss. Consistent with the “adenosine hypothesis” of 
sleep where the accumulation of adenosine in the brain promotes sleep, caffeine prolongs 
the time to fall asleep, decreases the deep stages of non-rapid-eye movement (not REM) 
sleep, reduces sleep efficiency, and alters the waking and sleep electroencephalogram 
(EEG) frequencies, which reliably reflect the need for sleep. Although additional 
research in this area is warranted, genetic variation appears to contribute to subjective 
and objective responses to caffeine on sleep. Carriers of the ADORA2A (rs5751876) C 
allele have greater sensitivity toward caffeine- induced sleep disturbance compared 
to those with the TT genotype. Taken together, it appears that individuals with the TT 
genotype for the rs5751876 SNP in the ADORA2A gene may have better performance 
outcomes, faster response times and less sleep disturbance following caffeine ingestion.

Vitamin A. No studies have examined the role of genetic modifiers of vitamin A status 
directly on athletic performance, however, there are several important functions of 
this micronutrient that are associated with optimal health, immunity and performance 
in athletes. Vitamin A is a fat-soluble vitamin, which plays a key role in both vision 
and immunity in its biologically active forms (retinal and retinoic acid). Vitamin A has 
diverse immune modulatory roles; hence, vitamin A deficiency has been associated 
with both immune dysfunctions in the gut, and several systemic immune disorders. 
Vitamin A is also a powerful antioxidant, protecting eyes from ocular diseases and 
helping to maintain vision. High-performance athletes appear to have superior visual 
abilities based on their capacity to access distinct visual skills, such as contrast 
sensitivity, dynamic acuity, stereoacuity, and ocular judgment, needed to accomplish 
interceptive actions (e.g., hand-eye coordination) and resolve fine spatial detail, which 
is required by many sports. In addition, slow visuomotor reaction time (VMRT) has 
been associated with musculoskeletal injury risk in sporting situations where there 
are greater challenges to visual stimulus detection and motor response execution. 
These visuomotor skills are key contributors to enhanced sport performance, and 
accordingly, require exceptional eye health. Deficiencies of certain micronutrients 
such as vitamin A decrease immune defense against invading pathogens and can cause 
the athlete to be more susceptible to infection. Low energy availability (dieting), poor 



food choices, jetlag, physical and psychological stress, and exposure to pollution and 
foreign pathogens in air, food and water while traveling can result in a deterioration 
in immune function and increased susceptibility to illness. Athletes following high 
volume, high intensity training and competition schedules are also known to have 
more frequent upper respiratory tract infections (URTI) compared to both sedentary 
and moderately exercising populations. Upon absorption, provitamin A carotenoids are 
readily converted to vitamin A by the BCMO1 enzyme expressed in enterocytes of the 
intestinal mucosa. ε-Carotene is the most abundant provitamin A carotenoid in the diet 
and the conversion of beta-carotene to retinal or retinoic acid is necessary for vitamin 
A to exert its biological functions. The rs11645428 variant in the BCMO1 gene affects 
circulating plasma carotenoid levels by impacting the conversion of dietary provitamin 
A carotenoids to active forms of vitamin A in the small intestine. Individuals with the 
GG genotype are inefficient at this conversion, and may be at higher risk for vitamin 
A deficiency. These individuals are considered low responders to dietary ε-carotene 
so consuming enough dietary pre-formed vitamin A (or supplements for vegans), can 
help to ensure that circulating levels of active vitamin A are adequate to support vision, 
immunity and normal growth and development. Anemia-Related Micronutrients: 
Iron, Folate, and Vitamin B12 There is an abundance of research demonstrating the 
adverse effects of low iron storage and anemia on athletic performance. The estimated 
prevalence of anemias and low levels of iron, folate, and vitamin B12 appear to be 
higher in elite-level athletes than in the general population, and these deficiencies 
can have significant negative impacts on performance. The most common symptoms 
of this disorder are fatigue, weakness and, in extreme cases, shortness of breath or 
palpitations. The importance of iron to athletes is established through its biological role 
in supporting the function of proteins and enzymes essential for maintaining physical 
and cognitive performance. Iron is incorporated into hemoglobin and myoglobin, 
proteins responsible for the transport and storage of oxygen. Iron-deficiency anemia is 
the most common type of anemia among athletes, who have higher iron requirements 
due to increased erythropoietic drive through higher intensities and volumes of 
training. The female athlete is at particular risk of iron deficiency due to menstruation 
and generally, a lower total energy or food intake compared to males. Along with 
dietary intake, foot strike hemolysis, gastrointestinal bleeding, exercise-induced 
inflammation, non-steroidal autoinflammatory drug (NSAID) use and environmental 
factors such as hypoxia (altitude), may influence iron metabolism in athletes of both 
sexes. Macrocytic anemias, which occur when erythrocytes are larger than normal, 
are generally classified into megaloblastic or not megaloblastic anemia. Megaloblastic 
anemia is caused by deficiency or impaired utilization of vitamin B12 and/or folate, 
whereas non-megaloblastic macrocytic anemia is caused by various diseases, and 
will not be discussed here. Other factors that are associated with anemia risk include 
genetic variation, which can alter micronutrient metabolism, transport or absorption, 
and can be used to identify individuals at risk of inadequate levels of vitamin B12, 
folate and iron stores. Performance improvements are usually seen with the treatment 
of anemia, which is related to improvements in symptoms such as general feelings of 



fatigue and weakness, difficulty exercising, and in more severe cases, dyspnea and 
palpitations. Hyperhomocysteinemia, which can result from low folate and/or vitamin 
B12 intake, may also increase the risk of skeletal muscle malfunction, including 
muscle weakness and muscle regeneration, and will be discussed further below

Folate. Methylene tetrahydrofolate reductase (MTHFR) is the rate- limiting enzyme in 
the methyl cycle, and is encoded by the MTHFR gene (112). The C677T (rs1801133) 
polymorphism in the MTHFR gene has been associated with low serum and red blood 
cell folate as well as elevated plasma homocysteine levels, which is an independent risk 
factor for cardiovascular disease (CVD). Several studies in athletic and non-athletic 
populations have shown that individuals with the CT or TT genotype are at an increased 
risk of low circulating folate levels when their diet is low in folate. Although there are no 
studies examining performance outcomes related to MTHFR genotypes or dietary folate 
intake, hyperhomocysteinemia has been shown to be associated with diminished muscle 
function. Several studies conducted in older adults have found a significant association 
between elevated plasma homocysteine concentrations and declined physical function, 
which may be mediated by a reduction in strength. Compared to those with the rs1801133 
CC genotype, individuals with TT genotype and possibly the CT genotype may be at a greater 
risk for hyperhomocysteinemia, although this may not be causative for lower physical 
performance. However, soccer players and sedentary individuals with the CC genotype 
have been shown to have more favorable body composition and performance measures 
such as aerobic and anaerobic threshold rates, compared to carriers of the T allele.
Vitamin B12. Vitamin B12 is also associated with RBC formation and aerobic capacity. 
Megaloblastic anemia results from vitamin B12 deficiency and is associated with 
elevated homocysteine, and results in general feelings of fatigue and weakness. 
Megaloblastic anemia limits the blood’s oxygen carrying capacity, thus reducing its 
availability to cells. Variation in the FUT2 gene (rs602662) has a significant impact 
on serum B12 levels where individuals with GG or GA genotypes possess the greatest 
risk for low serum vitamin B12 levels, but only when the diet is low in bioavailable 
sources of vitamin B12. This is consistent with previous genome-wide association 
studies, which found that individuals with the AA genotype had significantly 
higher concentrations of serum vitamin B12 compared to carriers of the G allele.
Vitamin C. Vitamin C is a water-soluble antioxidant that aids in the reduction of 
exercise-induced free-radical production. The production of potentially harmful ROS in 
athletes is greater than in non-athletes due to the massive increases (up to 200-fold at 
the level of skeletal muscle) in oxygen consumption during strenuous exercise. Vitamin 
C supplementation was once thought to mitigate this risk; however, studies have shown 
that excess vitamin C supplementation during endurance training can blunt beneficial 
training-induced physiological adaptations, such as muscle oxidative capacity and 
mitochondrial biogenesis and may actually diminish performance. Dietary consumption 
of vitamin C, up to 250 mg daily from fruits and vegetables, is likely sufficient to reduce 
oxidative stress without having a negative effect on performance. Additionally, collagen 
is a key constituent of connective tissue such as tendons and ligaments, and vitamin 



C is necessary for collagen production. This suggests that vitamin C may play a role 
in muscle growth and repair. Indeed, a recent landmark study examining collagen 
synthesis in athletes, reported that adding a gelatin and vitamin C supplement to an 
intermittent exercise protocol improves collagen synthesis and could play a beneficial 
role in injury prevention and accelerate musculoskeletal, ligament, and/or tendon 
tissue repair. The relationship between dietary vitamin C and circulating levels of 
ascorbic acid depend on an individual’s GSTT1 genotype. Individuals who do not meet 
the Recommended Dietary Allowance (RDA) for vitamin C are significantly more likely 
to be vitamin C deficient (as assessed by serum ascorbic acid levels) than those who 
meet the RDA, but this effect is much greater in individuals with the GSTT1 Del/Del 
genotype than those with the Ins allele. Genetic testing can help to identify athletes 
who may be at the greatest risk of low circulating vitamin C (ascorbic acid) levels in 
response to intake. These low circulating ascorbic acid levels may, in turn, diminish 
performance through an increased risk of high ROS and diminished muscle or connective 
tissue repair. Although studies have identified associations between circulating 
ascorbic acid concentrations and vitamin C transporters, SVCT1 and SVCT2, which 
are encoded by SLC23A1 and SLC23A2, there is no evidence that response to vitamin 
C intake differs by genotype. As such, the use of variants in SLC23A1 and SLC23A2 to 
make personalized dietary recommendations is not supported by the studies to date.
Vitamin D. There are no studies that link genetic modifiers of vitamin D status on 
athletic performance outcomes; however, there are several functions of this vitamin 
that are associated with bone health, immunity, recovery from training and various 
performance variables. Genetic determinants of circulating 25- hydroxyvitamin 
D (25(OH)D) can influence each of these factors thereby influencing performance.
Vitamin D is essential to calcium metabolism, increasing calcium absorption for optimal 
bone health (1), which is relevant to all athletes, but particularly those participating in 
sports with a high risk of stress fracture. Research comparing individuals with sufficient 
levels to insufficient or deficient levels of 25(OH)D has shown that it helps to prevent 
injury, promote larger type II muscle fiber size, reduce inflammation, reduce risk of 
acute respiratory illness enhance functional rehabilitation, thereby optimizing recovery 
and acute adaptive responses to intense training through reduced inflammation and 
increased blood flow. Two genes that have been shown to impact vitamin D status are the 
GC gene and the CYP2R1 gene. Variations in the GC and CYP2R1 genes are associated 
with a greater risk for low serum 25(OH)D. In one study, where 50% of participants 
took vitamin D supplements, only 22% of the participants had sufficient serum 25(OH)
D levels. In the remaining 78% who had insufficient levels, also only about half (47%) 
took vitamin D supplements. Within this population, vitamin D supplementation only 
explained 18% of the variation, compared to 30% from genetics, suggesting that genetics 
may play a greater role than supplementation in determining risk for low 25(OH)D levels. 
Out of the four genotypes analyzed, only CYP2R1 (rs10741657) and GC (rs2282679) 
were significantly associated with vitamin D status. Specifically, participants with the 
GG or GA genotype of CYP2R1 (rs10741657) were nearly four times more likely to have 
insufficient vitamin D levels. Those with the GG genotype of the GC gene (rs2282679) 



were significantly more likely to have low vitamin D levels compared to those with the TT 
genotype. These results were consistent with findings from previous studies, including 
the Study of Underlying Genetic Determinants of Vitamin D and Highly Related Traits 
(SUNLIGHT), which found significance on a genome-wide basis in 15 cohorts with over 
30,000 participants between three genetic variants including CYP2R1 (rs10741657) and 
GC (rs2282679) on vitamin D status. Not surprisingly, the number of risk variants that 
the participants possessed was directly related to their risk for vitamin D insufficiency. 
These findings demonstrate that genetic variation may be more impactful than 
supplementation intakes and behaviors on determining risk for vitamin D insufficiency.

Calcium. Although studies linking calcium intake, genetics and bone fracture has not 
been conducted in athletes specifically, genetic variation as it relates to risk of calcium 
deficiency and fracture risk have been studied in a large cohort of individuals, described 
below (167). Calcium is necessary for growth, maintenance and repair of bone tissue 
and impacts maintenance of blood calcium levels, regulation of muscle contraction, 
nerve conduction, and normal blood clotting. In order to absorb calcium, adequate 
vitamin D intake is also necessary. Inadequate dietary calcium and vitamin D increases 
the risk of low bone mineral density (BMD) and stress fractures. Low energy intakes, 
and menstrual dysfunction in female athletes, along with low vitamin D and calcium 
intakes further increase the risk of stress fractures in both males and females, and 
stress fractures are common and serious injuries in athletes. Some individuals do not 
utilize dietary calcium as efficiently as others and this may depend on variations in the 
GC gene. In one study, subjects (n = 6,181) were genotyped for two SNPs in the GC gene, 
rs7041 (VDBP gene, encodes an aspartic acid (Asp) at position 432 in the vitamin D 
binding protein (VDBP)) and rs4588 (encodes a threonine ( Thr ) at position 436 in the 
vitamin D binding protein (VDBP), and calcium intake was assessed in relation to the 
participants’ risk for bone fracture (167). In the entire sample of participants, only a 
small increased risk of bone fracture was observed for individuals homozygous for the 
G allele of GC (rs7041) and the C allele of GC (rs4588). However, in participants with 
low dietary calcium intake (<1.09 g/day) and who were homozygous for the G allele of 
rs7041 and the C allele of rs4588, there was a 42% increased risk of fracture compared to 
other genotypes. No differences between genotypes were found in participants with high 
dietary calcium intakes. These findings suggest that calcium intake recommendations 
could be based on GC genotype in athletes to help prevent stress fracture.

Protein. The FTO gene is also known as the ‘fat mass and obesity- associated gene’ 
since it has been shown to impact weight management and body composition. Dietary 
interventions may mitigate genetic predispositions associated with a higher body mass 
index (BMI) and body fat percentage, as determined by genetic variation in the FTO 
gene. Specifically, the Preventing Overweight Using Novel Dietary Strategies (POUNDS 
Lost) multicenter trial found that carrying an A allele of the FTO gene (rs1558902–a 
surrogate marker for rs9939609) and consuming a high protein diet was associated 
with a significantly lower fat mass at the 2-year follow up period compared to carrying 



two T alleles. Importantly, participants with the AA genotype (lesser effects in those 
with AT genotype) who were following the high protein diet protocol had significantly 
greater losses of total fat mass, total adipose tissue, visceral adipose tissue, lower total 
percent fat mass and percent trunk fat, compared to those following a lower protein 
diet protocol. Other studies have shown similar results where dietary protein intake 
was shown to be protective against the effect of the FTO risk variants on BMI and waist 
circumference. A randomized controlled trial (RCT) in 195 individuals showed that a 
hypocaloric diet resulted in greater weight loss in rs9939609 A allele carriers than 
noncarriers in both higher and lower protein diets, although metabolic improvements 
improved in all genotypes in the higher protein diets. Athletes who possess the AA 
genotype of the FTO gene at rs1558902 would benefit the most in terms of consuming 
a moderate-to-high protein diet (at least 25% of energy from protein) to optimize 
body composition. Greater lean mass in athletes has been associated with improved 
performance in strength and power sports, as well as some endurance events, and a 
decreased risk for injuries. For those athletes who do not possess the response variant 
(i.e., greater fat loss with higher protein intakes), following a diet with moderate 
protein intake (ε15–20% energy), to achieve and maintain an ideal body composition 
is important to note, as excess protein calories may be counterproductive toward this 
goal. In this instance, dietary goals for optimal performance may be better met by 
substituting protein energy for other macronutrients such as carbohydrates for fuel, 
fiber, prebiotics and other micronutrients, or by increasing intakes of essential fats.

Dietary Fat. Dietary fat, an essential component of the human diet, provides energy 
for aerobic endurance exercise and is necessary for the absorption of the fat-soluble 
vitamins A, D, E, and K. Independent of total energy intake, the percentage of energy 
derived from fat in an athlete’s diet can impact body composition, based on genetic 
variation. Individuals possessing the TT genotype of TCF7L2, transcription factor 7 like 
2, at rs7903146 appear to benefit from consuming a lower percent of total energy from 
fat (20–25% of energy) to optimize body composition. Specifically, participants with 
the TT genotype lost more fat mass when they were consuming a low-fat diet, compared 
to a high-fat diet (40–45% of energy). Moreover, individuals with the CC genotype in 
rs7903146 who consumed lower-fat diets actually lost significantly more lean mass, 
suggesting that these individuals should avoid low-fat nutrition interventions in order 
to optimize body composition for athletic performance. Body composition can, therefore, 
be optimized by targeting fat intake based on genetic variation in the TCF7L2 gene.

MonoUnsaturated Fat. Recommendations for fat intake can be further targeted to the 
different types of fats comprising total dietary fat. Athletes with the GG or GC genotype 
of the PPAR ε 2 gene at rs1801282 would benefit from a weight loss intervention that 
specifically targets body fat, while preserving lean body mass. Such individuals have 
been shown to demonstrate an enhanced weight loss response when consuming > 
56% of total fat from monounsaturated fatty acids (MUFAs) compared to those with 
the GG or GC genotype who consume < 56% of total fat from MUFAs. These results 



have not been found in those with the CC genotype of PPARε 2 at rs1801282 (208). 
MUFAs can be targeted in athletes who are aiming to decrease their body fat. It is well-
known that a lower body fat percentage is associated with enhanced performance in 
most sports (191, 207), however, sport clinicians must be cautious about nutrition 
recommendations aimed at reducing body fat. Striving for very low levels of body fat 
is highly correlated with the Relative Energy Deficiency in Sport (RED-S) syndrome 
in both females and males, which refers to ‘impaired physiological functioning caused 
by relative energy deficiency and includes impairments of metabolic rate, menstrual 
function, bone health, immunity, protein synthesis and cardiovascular health (209).

Saturated Fat and Polyunsaturated Fat. A nested case-control study found that the ratio 
of dietary saturated fatty acids (SFA) to polyunsaturated fatty acids (PUFA) influenced 
the risk of obesity associated with the TA and AA variants of the FTO gene at rs9939609 
(210). Specifically, participants possessing the A allele had a significantly higher BMI 
and waist circumference (WC) compared to TT homozygotes, but only when intakes of 
SFA were high and PUFAs were low. When participants with the A allele consumed < ε15% 
of energy from SFA and had a higher dietary PUFA:SFA ratio, there were no significant 
differences in WC and BMI between this group and participants with the TT genotype of 
rs9939609. These findings have implications for nutrition counseling impacting body 
composition (abdominal fat specifically) and BMI. Athletes with the TA or AA genotype 
may have a greater risk for accumulating excessive abdominal fat. An athlete can mitigate 
this risk by aiming to consume <10% of energy from SFA (to also account for heart health) 
and > 4% of energy from PUFAs, resulting in a PUFA:SFA ratio of at least 0.4 (210).
. 



Many variants are improperly used in predictive panels of toxicity, bone metabolism, 
sports performance due to defects in data collection, selection of reference population, 
frequency in the general population and selective effects. 
A drastic reduction in variants allows to create two types of panels.

1. Genetics, nutrition, physical exercise with 28 genes involved centered on lipoglycidic 
balance

2. Genetics, bones and muscles, sports with 11 genes involve
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